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A B S T R A C T   

Cellular and molecular imaging techniques and models have been developed to characterize single stages of viral 
proliferation after focal infection of cells in vitro. The fast and automatic classification of cell imaging data may 
prove helpful prior to any further comparison of representative experimental data to mathematical models of 
viral propagation in host cells. Here, we use computer generated images drawn from a reproduction of an im
aging model from a previously published study of experimentally obtained cell imaging data representing pro
gressive viral particle proliferation in host cell monolayers. Inspired by experimental time-based imaging data, 
here in this study viral particle increase in time is simulated by a one-by-one increase, across images, in black or 
gray single pixels representing dead or partially infected cells, and hypothetical remission by a one-by-one in
crease in white pixels coding for living cells in the original image model. The image simulations are submitted to 
unsupervised learning by a Self-Organizing Map (SOM) and the Quantization Error in the SOM output (SOM-QE) 
is used for automatic classification of the image simulations as a function of the represented extent of viral 
particle proliferation or cell recovery. Unsupervised classification by SOM-QE of 160 model images, each with 
more than three million pixels, is shown to provide a statistically reliable, pixel precise, and fast classification 
model that outperforms human computer-assisted image classification by RGB image mean computation. The 
automatic classification procedure proposed here provides a powerful approach to understand finely tuned 
mechanisms in the infection and proliferation of virus in cell lines in vitro or other cells.   

1. Introduction 

Viruses are cellular parasites that do not have a metabolism of their 
own. To proliferate, they must infect healthy host cells. To achieve this, 
virus particles are able to recognize and to bind specific receptor mol
ecules on the cytoplasmic membranes of host cells, a process that is 
known as attachment. This interaction between viral particles and a host 
cell’s membrane surface is mediated by proteins embedded within the 
viral envelope [1]. For example, the binding of viral envelope proteins to 
a host cell’s surface structure in the case of the human immunodefi
ciency virus (HIV), which is a coronavirus, involves interaction between 
the surface protein gp120 and the CD4 receptor [2], a polypeptide that 
occurs almost exclusively in the membranes of T-helper cells (lympho
cytes) and macrophages. This first step of the HIV replication cycle 
critically determines the ability of HIV to degrade the human immune 
system. In other cases, viral proteins may bind to cellular structures 

found on a larger variety of cell types. 
Various tools for cellular and molecular imaging have been devel

oped to characterize single intracellular stages of viral proliferation [1, 
3]. The high resolving power of electron microscopy (EM) permits 
studies at nanometer scale, providing direct images of viral proliferation 
(virion budding) on host cell membrane surfaces for diagnosis and 
research [4]. Scanning electron microscopy (SEM) in particular facili
tates single cell analysis and comparison between cells by visualizing 
ultrastructual changes on membrane surfaces and structures harboring 
viral replication sites correlated with the progression or remission of the 
infectious process [2,4,5]. 

Immunocytochemistry [5,6] and cell viability imaging by color 
staining and other labeling techniques allow the study of spatial and 
temporal dynamics of virus spreading on host cell surfaces in vitro. 
Haseltine et al. [7] developed an imaging method that permits tracking 
the spread of focal infections using a combination of 
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immunocytochemical labeling and step-by-step digital imaging. In their 
study, baby hamster kidney (BHK) cells were seeded on six well plates, 
grown as confluent monolayers and covered with a thin layer of agar. 
After piercing a small orifice in the agar, cell layers were infected by 
injecting 5 μl of virus VSVN1 inoculum at 1.6x107 infectious particles (i. 
e. a multiplicity of infection of 20) as described in Ref. [6,7]. Cells were 
subsequently fixed, and immunofluorescence labeled with an antibody 
against a viral glycoprotein on and within the infected cells. Images of 
(Fig. 1) were then acquired by epifluoresence microscopy at low 
magnification using a high-resolution monochrome digital camera. 

The temporal dynamics of infection spreading guided the iterative 
modeling steps that led to a mathematical reconstruction of its relevant 
characteristics. Haseltine et al.’s [7] model approach thus was aimed at 
facilitating the interpretation of experimental labeling data by high
lighting critical spatial and temporal aspects of viral infection and pro
liferation on a host cell. Any technique for the determination of in vitro 
cell changes and cell viability combined with any imaging technique or 
advanced imaging model involves human visual classification and/or 
interpretation of the image material, which may involve guesswork 
when the spatiotemporal uncertainty of the image contents is high. 
Under such conditions it is difficult to rule out any subjectivity of the 
analyst [5]. To ensure high-quality decision making in the evaluation of 
larger amounts of required. In addition, affordable precision software 
for an automatic classification of cell imaging data should combine high 
accuracy of classification with further advantages relative to speed, 
objectivity, and reproducibility of the quantifications. In our previous 
studies, we exploited functional properties such as sensitivity to spatial 
extent, intensity, and color of local image contrasts of the quantization 
error in the output of a Self-Organizing Map (SOM-QE) for unsupervised 
image classification as a function of the finest, often visible, clinically or 
functionally relevant variations in local contrast contents [8–15]. 
Regarding cell imaging data, the SOM-QE was successfully employed for 
fast unsupervised classification of SEM images of CD4 T-cells with 
varying extent of ultra-structural surface signals correlated with 
surface-localized single HIV-1 viral particle infection. It was shown that 
SOM-QE permits a fast automatic classification of sets of such SEM im
ages as a function of ultra-structural signal changes that are invisible to 
the human eye. As pointed out in our previous studies, any imaging 
method currently available has its own limitations, including for SEM. It 
is important that all images from a series with presumed functional 
variations submitted to pixel precise analysis are identically scaled. SEM 
is meant to provide a 3D model of ultrastructural cell properties, how
ever, the resulting images that are subject to any further analysis are in 
2D, with a z-axis projecting into virtual depth. This leaves additional 
room for viewpoint-related errors, and it is necessary to ensure that 
images from a given time series are not only identically scaled in 2D, but 
are taken from one and the same 3D view of the cell, or any other 
structure, when submitted to analysis. 

SOM-QE is also a powerful tool for the automatic classification of 
double-color-staining based cell viability data, as shown previously in 
96 image simulations [9]. SOM-QE consistently detects the smallest 
spatial changes in any of the local color signals [1,14]. These may reflect 
a systematic increase or decrease in theoretical cell viability below the 
expert visibility threshold. Signal detection experiments [9,11] have 
shown that clinically significant changes in the color or contrast of less 
than 10 pixels between two images of a series with clinical significance 
are impossible to detect, even by temporally unlimited expert visual 
inspection. SOM-QE detects any such changes in a consistent and sta
tistically reliable manner, as shown in proof-of-concept studies 
demonstrating the selectivity of the metric to the spatial extent, the 
contrast intensity, the contrast polarity and the color of single-pixel 
changes in random-dot images containing millions of image pixels 
[12–15]. 

In the present study, we use the previously published cell imaging 
model by Haseltine et al. [7], described in all necessary detail here 
above. It is shown that the fast automatic classification by SOM-QE gives 

Fig. 1. Example of a time-based imaging model (reproduced, modified, and 
shown here for illustration only) from the study by Haseltine et al. [7], where 
images of infected cells were generated at different times after focal infection of 
a cell monolayer. As described in Ref. [7], after focal infection in vitro, antibody 
labeling for viral glycoprotein, and detection by immunofluorescence micro
scopy, digital camera images of the infected monolayer region (circular image 
region) were generated. Contrast levels in the circular region represent relative 
amounts of living cell matter (white image pixels), progressing infection (image 
pixels in varying shades of gray), and dead cell matter (black image pixels). 
Images from top to bottom here correspond to times between 48 (top), 72 
(middle) and 90 h (bottom) of infection. Scale bars represent 1 mm. The model 
image from which all image simulations for this study here were drawn is the 
top image of this figure. 

B. Dresp-Langley and J.M. Wandeto                                                                                                                                                                                                        



Informatics in Medicine Unlocked 20 (2020) 100433

3

access to the earliest potential stages of viral propagation in host cells, 
which are detectable neither by visual inspection, nor by the imaging 
model per se. The imaging model described in Ref. [7] was aimed at 
providing an age-segregating model for the time course, in terms of 
hours or days, of viral particle proliferation following focal infection of 
the cell monolayer. The original images from the reference study [7] 
quantize the sum of infected and dead cell concentrations, a continuous 
variable, onto an integer-valued intensity scale. A high resolution 
computer software reconstruction of one of the images from the refer
ence study (see Fig. 1), taken at a particular moment in time in the 
course of in vitro monolayer infection, was used as the ground truth 
image here. The model copy derived from the initial image is then used 
to simulate image sequences in theoretical time corresponding to sec
onds or minutes of the smallest possible infectious progression/recession 
of the virus in the cell monolayer. Viral particle growth with time is 
simulated by a one-by-one increase, across images. Black pixels indicate 
dead, gray pixels represent slightly infected, white pixels represent 
living cells in the original and the hypothetical image model. 

The image simulations are then submitted to unsupervised learning 
by a Self-Organizing Map (SOM) and, as described previously [8–15], 
the Quantization Error in the SOM output (SOM-QE) is used for the 
automatic classification of the image simulations as a function of the 
represented extent of viral particle proliferation or cell recovery. 

2. Materials and methods 

2.1. Image simulations 

A total number of 160 images were computer generated, using the 
single-pixel-level control functions in ADOBE Photoshop7, on the basis 
of a virtual copy of the first of the original images shown in Fig. 1, which 
is a low resolution version of the high resolution ground truth image, 
shown in Fig. 2, that was reconstructed for this study here prior to any 
further image simulations. Fig. 2 shows the image state (ground truth) 
before any changes simulating further viral particle growth/recession 
were implemented. 159 further images were drawn directly from this 
high resolution computer model image to simulate the finest possible (i. 
e. observable in the image) viral particle growth or cell recovery in time. 
It took 30 min to reconstruct a model copy of the reference image, and 
about 1 h to generate the 160 image simulations of single pixel change. 
In an experimental cell study, changes reflected by the small single pixel 
changes in our high resolution image simulations could occur within 
minutes after in vitro infection. 

Viral particle growth was simulated by replacing, one by one, image 
pixels indicating living cell matter (white) by pixels indicating different 
levels of infection (shades of gray) or dead cell matter (black). In a hy
pothetical situation in which a specific cell treatment could enable cells 
to resist cell death and recover from infection, cell recovery in time was 
simulated by a one-by-one increase, across images, in light pixels rep
resenting living cell matter. Image pixels indicating dead cell matter 
(black) were replaced by pixels indicating progressive levels of infection 
(shades of gray) or living cell matter (white). All 160 images had iden
tical size (1906x1794) with a total number of 3 419 364 pixels. RED- 
GREEN-BLUE (RGB) values for the different gray levels of image pixels 
were [0, 0, 0], referred to as ‘black’ here [13,13,13], [38, 38, 38], [64, 
64, 64], referred to as ‘dark gray’ here, [89, 89, 89], [127, 127, 127], 
referred to as ‘medium gray’ here, [191, 191, 191], [217, 217, 217], 
referred to as ‘light gray’ here, [242, 242, 242], and [255, 255, 255], 
referred to as ‘white’ here. 

2.2. Self-organizing map (SOM) and quantization error (QE) 

The Self-Organizing Map (a prototype is graphically represented in 
Fig. 3, for illustration) may be described formally as a nonlinear, or
dered, smooth mapping of high-dimensional input data onto the ele
ments of a regular, low-dimensional array [16]. It is assumed that the set 

of input variables is definable as a real vector x, of n-dimension. A 
parametric real vector mi of n-dimension is associated with each element 
in the SOM. Vector mi is a model and the SOM is therefore an array of 
models. Assuming a general distance measure between x and mi denoted 
by d(x,mi), the map of an input vector x on the SOM array is defined as 
the array element mc that matches best (smallest d(x,mi)) with x. During 
the learning process, the input vector x is compared with all the mi in 
order to identify mc. The Euclidean distances ||x-mi|| define mc. Models 
topographically close in the map up to a certain geometric distance, 
indicated by hci, will activate each other to learn something from their 
common input x. This results in a local relaxation or smoothing effect on 
the models in this neighborhood, which in continuous learning leads to 
global ordering. SOM learning is represented by the equation 

m(t+ 1)=mi(t) + α(t)hci(t)[x(t) − mi(t)] (1)  

where t = 1, 2,3...is an integer, the discrete-time coordinate, hci(t) is the 
neighborhood function, a smoothing kernel defined over the map points 
which converges towards zero with time, α(t)is the learning rate, which 
also converges towards zero with time and affects the amount of 
learning in each model. At the end of the winner-take-all learning process 
in the SOM, each image input vector x becomes associated to its best 
matching model on the map mc. The difference between x and mc, ||x- 
mc||, is a measure of how close the final SOM value is to the original 
input value and is reflected by the quantization error, QE. The average 
QE of all x (X) in an image is given by: 

QE = 1

/

N
∑N

i=1
‖Xi − mci‖ (2)  

where N is the number of input vectors x in the image. The final weights 

Fig. 2. Computer generated image model reconstruction based on an original 
image from experimentally obtained cell imaging data [7]. The model possesses 
the same clinically relevant image data variations as the original (Fig. 1) at the 
same scale. A total of 160 images were computer generated, in ADOBE Photo
shop7, from this model reconstruction. Single-pixel RGB increments simulate 
theoretical image data for hypothetical viral particle growth/recession in time. 
This is achieved by replacing, one by one, pixels indicating living cell matter 
(white) by pixels indicating different levels of infection (shades of gray) or dead 
cell matter (black). Cell recovery after a hypothetical treatment was simulated 
by replacing, one by one, image pixels indicating dead cell matter (black) by 
pixels indicating different levels of infection (shades of gray) or living cell 
matter (white). 

B. Dresp-Langley and J.M. Wandeto                                                                                                                                                                                                        



Informatics in Medicine Unlocked 20 (2020) 100433

4

of the SOM are defined by a three dimensional output vector space 
representing each R, G, and B channel. The magnitude as well as the 
direction of change in any of these from one image to another is reliably 
reflected by changes in the QE. 

The code used for implementing the SOM-QE is available online at: 
https://www.researchgate.net/publication/330500541_Self-organi 

zing_map-based_quantization_error_from_images. 
The SOM training process consisted of 1 000 iterations. The SOM was 

a two-dimensional rectangular map of 4 by 4 nodes, hence capable of 
creating 16 models of observation from the data. The spatial locations, 
or coordinates, of each of the 16 models or domains, placed at different 
locations on the map, exhibit characteristics that make each one 
different from all the others. When a new input signal is presented to the 
map, the models compete and the winner will be the model the features 
of which most closely resemble those of the input signal. The input 
signal will thus be classified or grouped in one of models. Each model or 
domain acts like a separate decoder for the same input, i.e. indepen
dently interprets the information carried by a new input. The input is 
represented as a mathematical vector of the same format as that of the 
models in the map. Therefore, it is the presence or absence of an active 
response at a specific map location and not so much the exact input- 
output signal transformation or magnitude of the response that pro
vides the interpretation of the input. To obtain the initial values for the 
map size, a trial-and-error process was implemented. Map sizes larger 
than 4 by 4 produced observations where some models ended up empty, 
which meant that these models did not attract any input by the end of 
the training. As a consequence, 16 models were sufficient to represent all 
the fine structures in the image data. Neighborhood distance and 
learning rate were constant at 1.2 and 0.2 respectively. These values 
were obtained through the trial-and-error method after testing the 
quality of the first guess, which is directly determined by the value of the 
resulting quantization error; the lower this value, the better the first 
guess. It is worthwhile pointing out that the models were initialized by 

randomly picking vectors from the training image, called here the 
“original image”. This allows the SOM to work on the original data 
without any prior assumptions about a level of organization within the 
data. This, however, requires to start with a wider neighborhood func
tion and a bigger learning-rate factor than in procedures where initial 
values for model vectors are pre-selected [17]. The approach is 
economical in terms of computation times, which constitutes one of its 
major advantages for rapid change/no change detection on the basis of 
even larger sets of image data prior to any further human intervention or 
decision making. 

2.3. Experimental procedure 

The 160 images simulating viral particle growth by progressive one- 
by-one replacement, in the region inside the circle of infection, of white 
(“living cell matter”) pixels by light gray, medium gray, dark gray or 
black ones, or cell recovery, following a hypothetical treatment specif
ically designed to enable cells to recover from the effects of infection, by 
progressive one-by-one replacement of black (“dead cell matter”) pixels 
by light gray, medium gray, dark gray or white ones were fed into a 
single SOM. The training image for the SOM prior to analysis was the 
model image ‘before any pixel change’, shown in Fig. 2. After unsu
pervised SOM learning of the training image followed by SOM analysis 
of all images, the SOM-QE output was written into a data file. Further 
steps generate output plots of SOM-QE, where each output value is 
associated with the corresponding input image. The output data are then 
plotted in increasing/decreasing orders of SOM-QE magnitude as a 
function of the corresponding image variations (automatic image clas
sification). The computation time of SOM analysis of each of the 160 
images was about 12 s per image. The precision of the SOM-QE image 
classification was then compared with that of human computer-assisted 
classification of the same image data on the basis of the RGB Mean in 
Image-J, an open access image analysis tool available online at: https://i 
magej.nih.gov/ij/. 

3. Results 

The SOM-QE output data of automatic image classification by un
supervised SOM learning and the output data of human computer- 
assisted image classification in terms of the RGB image means were 
plotted as a function of the magnitude of image pixel changes simulating 
progressive, i.e. increasing spatial extent of, viral proliferation or pro
gressive, i.e. increasing spatial extent of, cells recovering from higher 
levels of infection, simulated here, in consistency with the experimental 
cell imaging approach described in Ref. [7], by different shades of gray. 
These results are shown here in Fig. 4 for images simulating progressive 
viral proliferation, and in Fig. 5 for images simulating progressive cell 
recovery from infection. The X axes of the graphs indicate the order of 
the images under the assumption that pixel changes in the image sim
ulations in that order reflect the underlying viral proliferation/cell re
covery process in time. The Y axes give the units of each metric (RGB 
Mean, SOM-QE) used to detect the changes in the images. 

3.1. Descriptive analysis 

The data in Fig. 4 (bottom graph) show that the SOM-QE consistently 
and reliably classifies the cellular changes in the images by signaling a 
linear decrease in the QE as a function of increasing the number of gray 
or black image pixel replacing white image pixels, simulating progres
sive viral proliferation in the infected cell monolayer region. The RGB 
image means (Fig. 4, top and middle graphs) from human computer- 
assisted image classification (ImageJ) does not allow to classify the 
image data in a statistically reliable way. In other words, the image 
mean fails to detect the finer pixel changes in the images. While the 
SOM-QE is highly and consistently sensitive to all changes simulating 
different intensity levels of infection from light gray to black pixel tones, 

Fig. 3. Representation of the SOM prototype with 16 models, indicated by the 
filled circles in the gray box. Each of these models is compared to the SOM input 
in an unsupervised winner-take-all learning process. Here in this study, the 
input vector corresponds to the RGB image pixel space. The model in the map 
best matching the SOM input will be a winner, and the parameters of the 
winning model will change towards further approaching the input. Parameters 
of models within close neighborhood of the winning model will also change, but 
to a lesser extent than those of the winner. At the end of training, each input 
space is associated with a model in the map. The difference between input 
vector and final winning model determines the quantization error (QE) in the 
SOM output. 

B. Dresp-Langley and J.M. Wandeto                                                                                                                                                                                                        

https://www.researchgate.net/publication/330500541_Self-organizing_map-based_quantization_error_from_images
https://www.researchgate.net/publication/330500541_Self-organizing_map-based_quantization_error_from_images
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/


Informatics in Medicine Unlocked 20 (2020) 100433

5

with a marked capacity to discriminate between changes in light gray 
and black (Fig. 4, bottom graph), the RGB mean fails completely to 
detect any changes in the number of light gray pixels replacing white 
ones (Fig. 4, middle graph on right) simulating local infection progres
sion in the images. 

The data in Fig. 5 (bottom graph) show that the SOM-QE consistently 
and reliably classifies the cellular changes in the images by signaling a 
linear increase in the QE as a function of increasing number of gray or 
white image pixel replacing black image pixels, simulating progressive 
cell recovery after a hypothetical treatment, i.e. increasing amount of 

Fig. 4. Graphic representations of the SOM-QE classification data (bottom graph) by comparison with the data from the human computer-assisted (ImageJ) clas
sification in terms of RGB image means (top and middle graphs). The output data are plotted here as a function of the magnitude of image pixel changes simulating 
progressive viral proliferation for varying levels of infection. These are simulated in the images by darker pixels indicating infection progression towards cell death 
replacing white image pixels indicating living cell tissue. 
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healthier living cell tissue. The RGB image means (Fig. 5, top and middle 
graphs) from human computer-assisted image classification (ImageJ), 
again, do not permit to reliably classify the image data. Again, the image 
mean does not detect the finer pixel changes in the images, while the 
SOM-QE detects them reliably. 

Again, highly and consistently sensitive to all changes simulating 

different intensity levels of cell tissue recovery, from light gray to white 
pixel tones, with a marked capacity to discriminate between all gray 
pixel and white pixels changes (Fig. 5, bottom graph), the RGB mean 
fails completely to detect any changes in the number of dark gray pixels 
replacing black ones (Fig. 5, middle graph on right), simulating low- 
level cellular recovery here, in the images. 

Fig. 5. Graphic representations of the SOM-QE classification data (bottom graph) by comparison with the data from the human computer-assisted (ImageJ) clas
sification in terms of RGB image means (top and middle graphs). The output data are plotted here as a function of the magnitude of image pixel changes simulating 
progressive (i.e. increasing spatial extent of) cell recovery for varying levels of infection. These are simulated in the images by lighter image pixels replacing black 
image pixels indicating dead cell tissue. 
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3.2. Statistical analysis 

The SOM-QE data and the RGB image means plotted in Figs. 4 and 5 
were submitted to linear regression analysis to further quantify the 
reliability of unsupervised SOM-QE classification by comparison with 
the RGB mean. The linear equations of the fits, with numerical values for 
slopes (a) and intercepts (b) of the functions, are displayed in the Figs. 4 
and 5. The goodness of these fits are assessed and compared on the basis 
of two statistical criteria: 1) the normality test (Shapiro-Wilk herein), 
which yields a probability criterion for the claim that the output dis
tribution, the SOM-QE and/or the RGB mean distributions herein, of a 
given classification model consistently reproduces the theoretically 
assumed normal distribution and 2) the regression coefficient R2, where 
R2 = 1 when the output data distribution is a perfectly linear model of 
the classification input data. 

The results of the normality tests and the regression analyses (R2), 
shown here in Table 1, show that the SOM-QE distributions or image 
classification data satisfy the normality criterion in all test cases. The 
regression coefficients R2 of the linear fits are .99 in all cases, indicating 
that the SOM-QE classification model of the image data is statistically 
reliable and provides a quasi-perfect detection model for the changes in 
the image input simulating pixel precise viral proliferation or recovery. 
Conversely, the RGB-Mean distributions or image classification data fail 
the normality criterion in all test cases, and the regression coefficients R2 

of the linear fits are <.70 in all cases, indicating that the RGB-Mean fails 
to reliably classify the changes in the image input simulating pixel 
precise viral proliferation or recovery. For a direct statistical compari
son, we used a t-test to assess the statistical significance of the difference 
between the regression coefficient distributions relative to the linear fits 
for the SOM-QE and the RGB Mean. The result of this test signals a 
statistically significant difference between the distributions (t (1,14) =
5.544; p < .001). 

4. Discussion 

The results from this study show that the unsupervised, self- 
organizing map-based automatic classification by SOM-QE [8–15] of 
cellular imaging models simulating viral proliferation in the cell [7], or 
cellular recovery after a specific hypothetical in vitro cell treatment in 
time with a single-pixel precision provides a statistically highly reliable 
classification model that by far outperforms human computer-assisted 
image classification in terms of the RGB image mean, for example, as 
demonstrated here. The linear models for SOM-QE increase or decrease 
as a function of local changes in single image pixel contrast reproduce 
the previously shown fine sensitivity of this neural network metric to 
changes in the contrast polarity and/or intensity of single pixels in 
several millions of image pixels [8–15]. The theoretical model images 
that were fed into SOM-QE analysis here each consist of more than three 
million pixels. The hypothetical timescale of the cell changes simulated 
by single-pixel changes between these high resolution images, for either 
viral progression or cell recovery, in either a single cell or in a monolayer 
of cells, may be estimated in seconds/minutes. With increasingly high 

resolution camera solutions, and images from a constant camera posi
tion taken every 10 min and fed directly into a computer for SOM-QE 
analysis, cell biologists could become able to detect significant 
changes within cell monolayers or single cells within unprecedentedly 
short delays. 

To provide a time course model for viral proliferation in terms of 
hours/days, the authors of the reference study [7] further reduced the 
complexity of information in their experimentally derived images, 
which had a considerably poorer resolution than our model image 
simulations here, by partitioning them into blocks of 20x20 pixels, 
which is not very precise, then averaging the pixels contained in each 
block. This reduction in image complexity was necessary to reduce the 
total number of pixels while retaining prominent features of the infec
tion spread for further analysis by their own mathematical model. In the 
case of their largest image, this represented a reduction from roughly 
two million to five thousand pixels in their study [7]. Image reduction to 
deal with too much complexity always runs a risk of loss of potentially 
relevant information. Since SOM-QE provides pixel precision analysis of 
very large images, image data reduction is not required to reliably 
classify even the smallest local changes. 

SOM-QE can also be applied to selected, particularly relevant image 
sections, or regions of interests (ROI), for analysis of single pixel changes 
whenever their spatial location in an image is a critical factor, as shown 
in some of our previous work [12]. Combining immunohistochemical 
data with digital imaging is definitely the way to go in the future. The 
exploitation of digital images in cancer diagnosis [18–20], for example, 
optimized by image segmentation methods capable of detection ROI 
automatically prior to further classification by SOM-QE, can provide 
objective analyses that make the difficult task of diagnosis more reliable 
and less time consuming for the human expert. Finally, in the current 
context of pandemic explosion of SARS-CoV, a particular class of coro
navirus, there is hope that cellular imaging models, like the one 
described in Ref. [7], which inspired this study here, that account for in 
vitro coronavirus entry and proliferation mechanisms in cell lines or 
other cultured cells will allow for a better understanding of the infection 
process [21]. Rapid, non-expensive, and swiftly implemented automatic 
image classification methods like the one proposed here could support 
the fast development of novel treatment strategies. 

5. Conclusions 

Digital image pixel RGB based models of viral proliferation after 
focal infection in vitro, or cell recovery in response to a specific treat
ment, may contain millions of image pixels that cannot be processed 
visually even by an experienced expert. The unsupervised self- 
organizing map based SOM-QE approach [8–15] is shown to provide a 
fast and statistically highly reliable classification model for the finest 
single pixel changes in image models containing several millions of 
pixels, simulating viral proliferation or cell recovery in terms of viral 
level reduction by progressive image pixel changes in contrast polarity 
and/or intensity. The classification method outperforms human 
computer-assisted image classification, is fast and economic, and can be 

Table 1 
Linear regression analysis of the SOM-QE and RGB Mean classification data.  

Normality test (Shapiro-Wilk) Linear regression coefficient (R2) simulated pixel precise cell infection progression or cell recovery 

SOM-QE RGB Mean SOM-QE RGB Mean hypothetical infection levels 

.42 passed .05 failed .99 .67 black replacing white 

.48 passed .05 failed .99 .54 dark gray replacing white 

.53 passed .05 failed .99 .32 Medium gray replacing white 

.84 passed .05 failed .99 0 light gray replacing white     
hypothetical recovery levels 

.42 passed .05 failed .99 .68 white replacing black 

.47 passed .05 failed .99 .66 light gray replacing black 

.60 passed .05 failed .99 .54 medium gray replacing black 

.74 passed .05 failed .99 0 dark gray replacing black  
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applied to large imaging data prior to further mathematical modeling. 
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France: 7ièmes Journées de la Fédération de Médecine Translationnelle de 
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